Distance Dependence and Spatial Distribution of the Molecular Quadrupole Moments of H₂, N₂, O₂, and F₂

D. B. Lawson and J. F. Harrison*

Department of Chemistry and Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1322

Received: January 28, 1997; In Final Form: April 23, 1997[®]

We have estimated the complete basis set limits for the Hartree–Fock, MP2, CASSCF, and CASSCF+1+2 wave functions for the titled molecules and calculated the molecular quadrupole moment as a function of bond length. Our recommended values for Θ (ν =0,J=0) compare favorably to the current experimental values and previous high-level calculations. To aid in the analysis of the relationship between the molecule's electronic structure and quadrupole moment, we introduce the concept of a quadrupole moment density that permits one to write the molecular quadrupole moment as a sum of the separated atoms quadrupole moments and a purely molecular contribution. The quadrupole density provides a (reference state dependent) means of determining the contribution to Θ from various regions in the molecule and gives considerable insight into the relationship between the electron density and the magnitude and sign of Θ , and it allows a detailed assessment of the contribution of electron correlation to Θ .

Introduction

In this report, we discuss the calculation and interpretation of the quadrupole moments of H₂, N₂, O₂, and F₂. Our primary interest is in developing a qualitative understanding of the relationship between a molecule's quadrupole moment and electronic structure, and, in order to do so reliably, we have explored the sensitivity of the calculated quadrupole moment to basis sets as well as electron correlation. Using SCF, MCSCF, MP2 perturbation theory and multireference configuration interaction, we calculate quadrupole moments, as a function of internuclear separation, for a sequence of basis sets obtained from the Dunning^{1a,1b} augmented correlation consistent sets by deleting g and higher symmetries.

We first discuss the quadrupole moments at the calculated equilibrium separations and compare these with experiment and previous calculations. Then, we examine the quadrupole moment functions (variation of the quadrupole moment with the internuclear separation), using MCSCF and MRCI techniques. Finally, we develop an interpretation of the molecular quadrupole moment as the sum of atomic contributions associated with the free (noninteracting) atoms and a molecular contribution that depends on the shift in the electron density due to molecule formation (the deformation density). Using the deformation density, we define a quadrupole density whose integral is the molecular contribution to the molecular quadrupole moment. The distance dependence of the quadrupole moment, the differing contributions to Θ from various regions of the charge distribution, and the role of electron correlation in determining Θ are analyzed in terms of the quadrupole density.

Computational Techniques

Following Dunning,¹ the augmented correlation consistent basis sets are referred to as aug-cc-pvXz, where X is a cardinal number (2-5) characterizing the basis. Because of technical limitations in the COLUMBUS properties program, we deleted angular functions of g or greater. The SCF, Möller–Plesset, and CISD calculations were done using g92/DFT,² while the

MCSCF and MRCI calculations used the COLUMBUS³ system of codes. We use the traceless form of the quadrupole-moment operator,⁴ which, for a homonuclear diatomic, reads

$$\hat{\Theta}_{zz} \equiv \hat{\Theta} = -\frac{1}{2} \sum_{i=1}^{N_{\rm e}} (3z_i^2 - r_i^2) + \frac{1}{2} Z R^2 \tag{1}$$

where Z is the atomic number of the nuclei in the diatomic and R is the internuclear separation. We use atomic units throughout, except where explicitly noted. In these units, 1 au of quadrupole moment (ea_2^0) contains 1.344 911 B, 4.4866 × 10^{-40} cm², and 1.344 911 × 10^{-26} esu cm².

We estimate the complete basis set (CBS)⁵ limit of a property by fitting the property values to a function of the form

$$P(X) = P(\infty) + Be^{-CX}$$
(2)

where X is the cardinal number of the basis set and P(X) is the property calculated with that basis.

Tables 1-4 collect the quadrupole moments of the titled molecules for various wave functions as a function of basis set. The MP2 wave functions include excitations from the $1\sigma_{\sigma}$ and $1\sigma_u$ orbitals of N₂, O₂, and F₂. The MCSCF wave functions are CASSCF functions over the MO's derived from the valence p orbitals (the $3\sigma_g$, $3\sigma_u$, $1\pi_{ux}$, $1\pi_{uy}$, $1\pi_{gx}$, $1\pi_{gy}$). The MRCI incorporates all single and double excitations from these six orbitals, as well as all double excitations from the $2\sigma_g$ and $2\sigma_u$ orbitals. The CASSCF wave functions include all valence electrons and the eight orbitals described above, and the CASSCF+1+2 wave function consists of all single and double excitations from the CASSCF reference space. For O₂, both ROHF and UHF results are reported. The quadrupole moments of the SCF, MCSCF, MP2, and CI wave functions were calculated using expectation values. We also computed the MP2 quadrupole moments using energy derivatives, and they differ by $\sim 1\%$ from the expectation values.

Discussion

Let us look, first, at the H_2 quadrupole data in Table 1. Several characteristics are evident. First, the convergence to

S1089-5639(97)00342-3 CCC: \$14.00 © 1997 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, June 1, 1997.

TABLE 1: Calculated and Experimental Constants for the Ground State, X ${}^{1}\Sigma_{g}^{+}$, of H₂

method basis	$r_{\rm e}\left(a_0 ight)$	$E_{\rm T} (e^{2/a_0})$	D _e (ev)	$\omega_{\rm e} ({\rm cm}^{-1})$	$\Theta_{zz} (ea_0^2)$
RHF					
aug-cc-pvdz	1.4137	$-1.128\ 826$	3.5066	4558	0.4613
aug-cc-pvtz	1.3880	-1.133 056	3.6207	4585	0.4916
aug-cc-pvqz	1.3865	-1.133508	3.6330	4582	0.4867
aug-cc-pv5z	1.3863	-1.133 648	3.6368	4583	0.4852
CBS limit	1.3863	-1.133 6	3.6355		0.4845
MP2					
aug-cc-pvdz	1.4271	-1.156216	4.2509	4459	0.4401
aug-cc-pvtz	1.3933	-1.165023	4.4906	4519	0.4719
aug-cc-pvqz	1.3912	-1.166740	4.5373	4517	0.4679
aug-cc-pv5z	1.3902	-1.167 191	4.5496	4521	0.4662
CBS limit	1.3893	-1.167 3	4.5498		0.4649
CASSCF					
aug-cc-pvqz	1.4047	-1.171718	4.6728	4382	0.4573
CISD					
aug-cc-pvdz	1.4392	-1.164900	4.4873	4345	0.4275
aug-cc-pvtz	1.4041	-1.172636	4.6978	4401	0.4616
aug-cc-pvqz	1.4022	-1.173 867	4.7313	4400	0.4585
aug-cc-pv5z	1.4014	$-1.174\ 175$	4.7397	4404	0.4569
CBS limit	1.4010	-1.174 2	4.7403		0.4552
exptl	1.401112		4.748712	4404.712	0.460 ± 0.021^{10}

TABLE 2: Calculated and Experimental Constants for the Ground State, X ${}^{1}\Sigma_{g}^{+}$, of N₂

$\mathbf{r}_{e}(a_{0})$	$E_{\rm T}~(e^{2}/a_{0})$	$D_{\rm e} ({\rm ev})$	$\omega_{\rm e} ({\rm cm}^{-1})$	$\Theta_{zz} (ea_0^2)$
2.0377	-108.961 925	4.9576	2736	-0.9490
2.0163	-108.987796	5.2404	2726	-1.0090
2.0135	-108.994 616	5.2836	2730	-1.0118
2.0133	-108.995999	5.2870	2729	-1.0149
2.0133		5.2891		-1.0158
2.1388	$-109.280\ 650$	9.4100	2157	-1.1262
2.1053	$-109.364\ 800$	10.0293	2187	-1.1626
2.0985	$-109.383\ 055$	10.1363	2200	-1.1710
2.0976	-109.388586	10.1731	2206	-1.1747
2.0970		10.1724		-1.1751
2.1076	$-109.097\ 018$	8.6337	2351	-1.1683
2.0853	-109.120694	8.8568	2348	-1.2260
2.0825	-109.127412	8.8973	2352	-1.2292
2.0821		8.9063		-1.2294
2.0860	-109.139872	9.2364	2340	-1.1753
2.1144	$-109.284\ 004$	8.7673	2328	-1.1079
2.0866	-109.367 229	9.5037	2335	-1.1390
2.0806	$-109.383\ 822$	9.5698	2344	-1.1464
2.0789		9.5721		-1.1487
2.0827	-109.386 811	9.5755	2337	-1.1247
2.0810				-1.1270
2.0744^{12}		9.9065 ¹²	2358.612	-1.09 ± 0.07^{36}
	$\begin{array}{c} r_{e}(a_{0}) \\ \hline \\ 2.0377 \\ 2.0163 \\ 2.0135 \\ 2.0133 \\ 2.0133 \\ 2.0133 \\ 2.0133 \\ 2.0133 \\ 2.0985 \\ 2.0976 \\ 2.0976 \\ 2.0976 \\ 2.0976 \\ 2.0976 \\ 2.0976 \\ 2.0976 \\ 2.0975 \\ 2.0825 \\ 2.0821 \\ 2.0822 \\ 2.0821 \\ 2.0866 \\ 2.0144 \\ 2.0866 \\ 2.0789 \\ 2.0827 \\ 2.0810 \\ 2.0744^{12} \end{array}$	$r_c (a_0)$ $E_T (e^{-/a_0)}$ 2.0377 -108.961925 2.0163 -108.987796 2.0135 -108.994616 2.0133 -109.280650 2.1053 -109.380650 2.1053 -109.383055 2.0976 -109.097018 2.0825 -109.120694 2.0821 -109.127412 2.0860 -109.383822 2.0866 -109.383822 2.07789 -109.386811 2.0827 -109.386811 2.0810 -109.386811	$r_c(a_0)$ $E_T(e^{-j}a_0)$ $D_c(ev)$ 2.0377 -108.961925 4.9576 2.0163 -108.987796 5.2404 2.0135 -108.994616 5.2836 2.0133 -108.995999 5.2870 2.0133 -109.280650 9.4100 2.1053 -109.364800 10.0293 2.0985 -109.383055 10.1363 2.0976 -109.097018 8.6337 2.0853 -109.120694 8.8568 2.0825 -109.127412 8.9063 2.0860 -109.139872 9.2364 2.1144 -109.284004 8.7673 2.0866 -109.367229 9.5037 2.0806 -109.383822 9.5698 2.0789 9.5721 2.0827 2.0827 -109.386811 9.5755 2.0810 2.0744^{12} 9.9065^{12}	$r_e(a_0)$ $E_T(e^{r}/a_0)$ $D_e(ev)$ $\omega_e(cm^{-1})$ 2.0377 -108.961925 4.9576 27362.0163 -108.987796 5.2404 27262.0135 -108.994616 5.2836 27302.0133 -108.995999 5.2870 27292.0133 -109.280650 9.4100 21572.1053 -109.364800 10.0293 21872.0985 -109.383055 10.1363 22002.0976 -109.388586 10.1731 22062.0970 10.1724 222.1076 -109.097018 8.6337 23512.0823 -109.120694 8.8568 23482.0825 -109.127412 8.8973 23522.0860 -109.3872 9.2364 23402.1144 -109.284004 8.7673 23282.0866 -109.383822 9.5037 23352.0806 -109.386811 9.5755 23372.0807 -109.386811 9.5755 23372.0810 2.0744^{12} 9.9065^{12} 2358.6^{12}

the CBS limit is only monotonic after the aug-cc-pvdz basis, and accordingly, we use the last three basis sets to extrapolate to the CBS limit. Within these three basis sets, increasing the flexibility of the basis decreases Θ , as does increasing the level of correlation. The aug-cc-pv5z basis set results are close to the CBS limit for each model wave function.

Note that the CBS-CISD limit predicts an equilibrium bond length $R_{opt} = 1.4010a_0$ and a dissociation energy $D_e =$ 4.740 ev, in excellent agreement with the experimental values¹² 1.4011 a_0 and 4.749 ev. Our CBS-CISD value of Θ is +0.455 ea_0^2 and agrees with the essentially exact theoretical result⁸ of + 0.457 ea_0^2 . The experimental value for Θ , +0.460 $\pm 0.021ea_0^2$, is an indirect value assembled from the magnetic susceptibility anisotropy and the molecular g value, assuming a vibrationless H₂.⁷⁻⁹ As such, it agrees well with our CBS-CISD estimate of the vibrationless Θ , +0.455 ea_0^2 . Buckingham and Cordle¹⁰ have estimated the vibrational (v = 0, J = 1) value to be 0.4853 ea_0^2 . Figure 2 shows the variation of Θ with R for the SCF and CISD wave functions, using the aug-ccpvqz basis. These data were fit to a quadratic function of the form

 $\Theta(R) =$

$$\Theta(R_{\rm opt}) + \left(\frac{\mathrm{d}\Theta}{\mathrm{d}R}\right)_{\rm opt} (R - R_{\rm opt}) + \left(\frac{\mathrm{d}^2\Theta}{\mathrm{d}R^2}\right)_{\rm opt} \frac{(R - R_{\rm opt})^2}{2} (3)$$

and the parameters are reported in Table 5. These data are useful in correcting our calculated values to other bond lengths for comparison with previous calculations. Additionally, they allow us to estimate the vibrational dependence of Θ , using the formula^{10,11}

$$\Theta_{\nu} = \Theta_{\text{opt}} + \frac{B_{\text{e}}}{\omega_{\text{e}}} \left[3 \left(1 + \frac{\alpha_{\text{e}}\omega_{\text{e}}}{6B_{\text{e}}^2} \right) R_{\text{opt}} \left(\frac{\mathrm{d}\Theta}{\mathrm{d}R} \right)_{R_{\text{opt}}} + R_{\text{opt}}^2 \left(\frac{\mathrm{d}^2\Theta}{\mathrm{d}R^2} \right)_{R_{\text{opt}}} \right] (\nu + 1/2)$$
(4)

and experimental values¹² for the spectroscopic parameters α_e ,

TABLE 3: Calculated and Experimental Constants for the Ground State, X ${}^{3}\Sigma_{g}^{-}$, of O₂

method basis	$r_{\rm e}(a_0)$	$E_{\rm T} (e^{2}/a_{0})$	$D_{\rm e}~({\rm ev})$	$\omega_{\rm e}~({\rm cm}^{-1})$	$\Theta_{zz} (ea_0^2)$
RoHF					
aug-cc-pvdz	2.1840	$-149.625\ 220$	1.1784	2018	-0.2833
aug-cc-pvtz	2.1779	-149.660506	1.2923	2001	-0.3928
aug-cc-pvqz	2.1749	$-149.670\ 308$	1.3110	2006	-0.4085
aug-cc-pv5z	2.1747	-149.672974	1.3186	2008	-0.4183
CBS limit	2.1739		1.3181		-0.4188
UHF					
aug-cc-pvdz	2.1979	-149.646215	1.7497	2025	-0.2341
aug-cc-pvtz	2.1915	-149.682470	1.8899	1960	-0.3134
aug-cc-pvgz	2.1885	-149.692404	1.9124	1965	-0.3273
aug-cc-pv5z	2.1885	-149.695099	1.9207	1966	-0.3356
CBS limit	2.1889		1.9172		-0.3427
UMP2					
aug-cc-pvdz	2.3314	-150.011480	5.2852	1428	-0.1107
aug-cc-pvtz	2.3138	-150.128401	5.6078	1455	-0.2178
aug-cc-pvgz	2.3064	-150.153761	5.6322	1467	-0.2421
aug-cc-pv5z	2.3049	-150.162153	5.6548	1465	-0.2537
CBS limit	2.3032		5.6472		-0.2546
MCSCF					
aug-cc-pvdz	2.3022	-149.718078	3.7982	1550	-0.1457
aug-cc-pvtz	2.2975	-149.752814	3.9146	1543	-0.2618
aug-cc-pvqz	2.2939	-149.763505	3.9606	1548	-0.2858
CBS limit	2.2936		3.9906		-0.2920
CASSCF					
aug-cc-pvqz	2.2973	-149.768890	4.1072	1544	-0.2822
MRCĬ					
aug-cc-pvdz	2.3072	$-150.003\ 808$	4.4229	1551	-0.1213
aug-cc-pvtz	2.2921	-150.114527	4.9575	1565	-0.2156
aug-cc-pvqz	2.2864	-150.138411	5.0034	1495	-0.2474
CBS limit	2.2830		5.0077		-0.2636
CASSCF+1+2					
aug-cc-pvqz	2.2907	$-150.140\ 112$	5.0056	1564	-0.2368
exptl	2.281812		5.231812	1580.212	-0.3 ± 0.1^{41}

TABLE 4: Calculated and Experimental Constants for the Ground State, X ${}^{1}\Sigma_{g}^{+}$, of F₂

method basis	$r_{\rm e}(a_0)$	$E_{\rm T}~(e^{2}/a_{0})$	$D_{\rm e}~({\rm ev})$	$\omega_{\rm e} ({\rm cm}^{-1})$	$\Theta_{zz} (ea_0^2)$
RHF					
aug-cc-pvdz	2.5288	-198.703 251	1.3847	1216	0.5229
aug-cc-pvtz	2.5099	-198.760936	1.1764	1271	0.3558
aug-cc-pvqz	2.5090	-198.774915	1.1770	1264	0.3321
aug-cc-pv5z	2.5071	-198.779081	1.1786	1267	0.3149
CBS limit	2.5079	-198.7801	1.1792		0.3180
MP2					
aug-cc-pvdz	2.6959	-199.126 917	1.5039	934	0.9254
aug-cc-pvtz	2.6490	$-199.290\ 907$	1.7987	1002	0.7588
aug-cc-pvqz	2.6471	-199.326 593	1.7931	1013	0.7374
aug-cc-pv5z	2.6452	$-199.338\ 340$	1.8004	1017	0.7199
CBS limit	2.6460	-199.339 9	1.7970		0.7236
MCSCF					
aug-cc-pvdz	2.8257	-198.777 612	0.6388	637	0.9873
aug-cc-pvtz	2.7643	-198.832 379	0.7677	718	0.7899
aug-cc-pvqz	2.7632	-198.846 561	0.7658	731	0.7651
CBS limit	2.7632	-198.851 5	0.7681		0.7616
CASSCF					
aug-cc-pvqz	2.7598	-198.848 763	0.8257	731	0.7611
MRCI					
aug-cc-pvdz	2.7520	-199.119 575	1.2603	791	0.9370
aug-cc-pvtz	2.6838	-199.277 054	1.4875	889	0.7356
aug-cc-pvqz	2.6825	$-199.310\ 003$	1.4879	886	0.7111
CBS limit	2.6827	-199.3187	1.4906		0.7077
CASSCF+1+2					
aug-cc-pvqz	2.6853	-199.311 6	1.5021	887	0.7165
exptl	2.668112		1.6916 ¹²	916.6 ¹²	$1.0-1.3^{33}$ 0.56^{34}

 $\omega_{\rm e}$, and $B_{\rm e}$. Using eq 3 and our $R_{\rm opt}$ for the HF and CISD wave functions, we corrected Θ to the experimental $R_{\rm exptl} = 1.4011$ a_0 at which most other calculations were done. Our HF result at $R_{\rm exptl}$ is $0.4937ea_0^2$, in excellent agreement with the numerical HF result ($0.4934ea_0^2$) of Laaksonen, Pyykkö, and Sundholm.¹³ Using eq 4 and the data in Table 5, we estimate the vibrational dependent CBS-CISD value of Θ to be

$$\Theta(H_2;v) = +0.455 + 0.051(v + \frac{1}{2})$$

or $\Theta(H_2; v=0) = 0.481ea_0^2$

which is in good agreement with the v = 0, J = 0 values of Wolniewicz,¹⁴ 0.484 ea_0^2 and Kosmasa and Thakhar,¹⁵ 0.483 ea_0^2 , and the v = 0, J = 1 value, 0.4853 ea_0^2 , of Buckingham and Cordle.¹⁰ There are a vast number of calculations^{6-8,13-19} of $\Theta(H_2)$, and we collect, in Table 6, a representative collection of *ab-initio* values for $\Theta(H_2)$, along with the experimental values and our CBS-HF and CBS-CISD results.

From Table 5, we see that the slope of $\Theta(H_2)$ around R_{opt} is positive, as it is for N₂, O₂, and F₂. Accordingly, to the extent that the RHF model limit for R_{opt} is less than R_{exptl} , the HF

TABLE 5: Equilibrium Value of the First and Second Derivatives of the Molecular Quadrupole Moment Function for H_2 , N_2 , O_2 , and F_2 , Calculated with Various Wave Functions

	wave			
molecule	function	$R_{\rm opt}\left(a_0 ight)$	$(\mathrm{d}\Theta/\mathrm{d}R)_{R_{\mathrm{opt}}}(ea_0)$	$(d^2\Theta/dR^2)_{R_{opt}}(e)$
H_2	SCF	1.3865	0.6064	0.2622
H_2	CISD	1.4022	0.5174	0.1028
N_2	SCF	2.0133	1.4017	0.5594
N_2	MCSCF	2.0825	0.9481	0.0548
N_2	MRCI	2.0806	0.9593	0.0892
O_2	ROSCF	2.1747	1.4797	-0.0744
O_2	MCSCF	2.2939	1.3720	-0.1998
O_2	MRCI	2.2864	1.4738	-0.2160
F_2	SCF	2.5071	1.1656	-0.6212
F_2	MCSCF	2.7632	1.1399	-0.9718
F_2	MRCI	2.6825	1.2134	-0.9142

model limit for Θ is always less than the HF value calculated at R_{exptl} . Note that electron correlation decreases Θ relative to the HF value. Precisely how much depends on whether one

 TABLE 6: Section of H₂ Quadrupole Moments

compares the HF and correlated value at the experimental bond length or at the optimal bond length (R_{opt}) corresponding to each model. Since correlation corrections to the HF wave function are responsible for changing the predicted R_{opt} , measuring correlation effects relative to the experimental bond length obscures this important effect. For example, Θ (CISD) at the experimental bond length is 7.8% smaller than Θ (HF) at this bond length, while Θ (CISD) and Θ (HF) differ by 6.0% when each is referred to its model limit R_{opt} .

Our N₂ results are summarized in Table 2 and compared with selected calculations^{18,21–32} and experiments^{36,37} in Table 7. As with H₂, increasing the quality of the basis set within a model reduces the calculated Θ and adding correlation decreases Θ , relative to the SCF values. Our CBS-HF limit is $-1.0158ea_0^2$ at R_{opt} of $2.0133a_0$ and $-0.9306ea_0^2$ at $R = 2.074 32a_0$, in excellent agreement with the numerical HF result²⁰ of $-0.9310ea_0^2$ at this bond length. The convergence of the MP2, MCSCF, and MRCI results all suggest that the aug-cc-pvqz basis produces a quadrupole moment that differs

$R(a_0)$	$\Theta(ea_0^2)$	ref	comment
1.4	0.493	17	Hartree-Fock limit
1.4	0.493422	13	numerical HF
1.405	0.4898	15	SCF, derivative Hartree-Fock, ELP basis
1.3863	0.4845	LH^a	CBS-HF; R_{opt}
1.4016	0.4937	LH^{a}	CBS-HF; exptl $R_{\rm e}$
1.4	0.457	6	essentially exact wave function
1.401	0.437	18	numerical DFT
1.40	0.4438	19	MP4 Sadlej ¹⁶ basis
1.40	0.4414	19	CISD Sadlej basis
1.405	0.4512	15	CISD, ELP basis
1.40	0.456444	15	explicitly correlated Gaussian, essentially exact wave function
1.3895	0.4649	LH^a	$CBS-MP2 R_{opt}$
1.4016	0.4712	LH^{a}	CBS-MP2 exptl $R_{\rm e}$
1.4010	0.4552	LH^{a}	$CBS-CISD R_{opt}$
vibrational average	0.516	LH^{a}	CBS-HF; $v = 0, J = 0$
vibrational average	0.481	LH^{a}	CBS-CISD; $v = 0, J = 0$
vibrational average	0.477	20	integrate radial wave function
vibrational average	0.483103	15	explicitly correlated Gaussian, essentially exact wave function,
Ū.			integrate radial wave function, $v = 0, J = 0$
exptl	0.470 ± 0.021	8	derived from exptl data-nonvibrating molecule
exptl	0.485	10	vibrational average of magnetic anisotropy and g factor; $v = 0, J = 1$
exptl exptl	0.470 ± 0.021 0.485	8 10	derived from exptl data—nonvibrating molecule vibrational average of magnetic anisotropy and g factor; $v = 0, J = 1$

^a This work.

TABLE 7: Selection of N₂ Quadrupole Moments

$R(a_0)$	$\Theta(ea_0^2)$	ref	comment
2.07432	-0.9310	2	numerical HF
2.068	-0.9400	22, 23	numerical HF
2.07432	-0.9054	24	SCF large basis
2.07430	-0.9285	25	SCF large basis
2.068	-0.937	26	SCF
2.105	-0.8858	31	derivative Hartree-Fock, ELP basis
2.0133	-1.0158	LH^{a}	SCF at $R_{\rm opt}$
2.07435	-0.9306	LH^{a}	CBS-SCF limit
2.075	-1.137	18	numerical DFT
2.068	-1.1426	27	numerical HFS
2.07430	-1.1289	28	large basis set DFT
2.068	-1.15	29	numerical HFS
2.07432	-1.1131	24	SDQ-MPPT(4); 6s4p3d1f
2.07430	-1.0905	25	MRSD-CI
2.068	-1.154	26	MRSD-CI
2.068	-1.16865	30	CCSD-Sadlej's ¹⁶ 5s4p2d basis
2.105	-1.0846	31	AACD-ELP basis
2.0856	-1.1755	LH^{a}	CBS-CASSCF; R_{opt}
2.0810	-1.1270	LH^{a}	CBS-CASSCF+1+2; R_{opt}
2.07432	-1.1334	LH^{a}	CBS-CASSCF+1+2; R_{exptl}
vibrational average	-1.118	LH^{a}	CBS-CASSCF+1+2; $v = 0, J = 0$
vibrational average	-1.1557	35	CCSD, $v = 0$, $J = 0$; Sadlej's 5s4p2d basis
exptl	-1.09 ± 0.07	36	optical birefringence
exptl	-1.05 ± 0.06	37	optical birefringence

^a This work.

 TABLE 8: Comparison of Experimental and Theoretical

 Quadrupole-Moment Derivatives for N2

$+0.94$ 43quadrupole absorption $+0.97$ 44collision-induced $+0.95$ 45collision-induced $+0.933 \pm 0.039$ 46quadrupole absorption	$(\mathrm{d}\Theta/\mathrm{d}R)_{R_{\mathrm{e}}}(ea_{0})$	ref	comment
0.959 LH ^a MRCI aug-cc-pvqz; R_o 0.948 LH ^a MCSCF aug-cc-pvqz; R_{out} 1.402 LH ^a SCF aug-cc-pvqz; R_{out}	$\begin{array}{c} +0.94 \\ +0.97 \\ +0.95 \\ +0.933 \pm 0.039 \\ 0.959 \\ 0.948 \\ 1402 \end{array}$	43 44 45 46 LH ^a LH ^a	quadrupole absorption collision-induced collision-induced quadrupole absorption MRCI aug-cc-pvqz; R _{opt} MCSCF aug-cc-pvqz; R _{opt}

^a This work.

from the CBS limit by less than 0.2%, suggesting that the individual CASSCF and CASSCF+1+2 values of $-1.1753ea_0^2$ and $-1.1247ea_0^2$ are near the model limit. From Table 5, we see the similarity between the MCSCF and the MRCI Θ versus *R* curves around R_{opt} . The SCF curve has significantly larger first and second derivatives, and these are in good agreement with calculations by Truhlar³⁸ and Maroulis and Bishop.³⁹ Using the MRCI derivatives in Table 5, we estimate the vibrational dependence of the CBS-CASSCF+1+2 quadrupole moment as

$$\Theta(N_2;v) = -1.1247 + 0.0137(v + \frac{1}{2})$$

and so our recommended vibrationally corrected quadrupole moment is $\Theta(N_2; v=0) = -1.118ea_0^2$. This is in good agreement with the reported experimental quadrupole moments gathered in Table 7. The several experimental estimates of the quadrupole derivative available in the literature⁴³⁻⁴⁶ average $0.95ea_0$, and these may be compared with our SCF, MCSCF, and MRCI results of $1.402ea_0$, $0.948ea_0$, and $0.959ea_0$. The SCF result is clearly much too large, while the correlated values agree with the average of the experimental values. The data are collected in Table 8. Note that the significant reduction in $d\Theta/dR$, when a correlated wave function is used, is implicit in the SCF vs GVB results reported by Cartwright and Dunning.⁴⁰

Our O₂ results are summarized in Table 3. As with H₂ and N₂, increasing the quality of the basis set decreases the quadrupole moment. However, unlike H₂ and N₂, adding correlation increases the quadrupole moment (makes it less negative). The opposing effects of basis-set quality and correlation permits a limited correlation wave function with a small basis set to predict a quadrupole moment comparable with the CBS-MRCI limit. We have not found a reported Hartree-Fock limit for $\Theta(O_2)$ with which to compare either our ROHF results ($R_{opt} = 2.1747a_0, \Theta = -0.1488ea_0^2$) or our UHF results $(R_{\text{opt}} = 2.1885a_0, \Theta = -0.3427ea_0^2)$. Our ROHF and UHF results at $R = 2.28a_0$ are $-0.264ea_0^2$ and $-0.218ea_0^2$, respectively and are in reasonable agreement with a large basis SCF calculation, by Bündgen *et al.*,²⁶ at $R = 2.2819a_0$ that predicts $\Theta = -0.249 \ ea_0^2$. There are two numerical HFS calculations of Θ , both at $\overset{\circ}{R} = 2.28 \ a_0$. The first, by Becke,²⁹ is an unrestricted calculation that predicts $\Theta = -0.36 \ ea_0^2$, while the second, by Laaksonen et al.,27 is a spin-restricted calculation predicting $\Theta = -0.3885ea_0^2$.

Our CBS CASSCF and CASSCF+1+2 results are $-0.2885ea_0^2$ and $-0.2530ea_0^2$, respectively. It is fascinating that ROHF calculations at the experimental bond length predict a $\Theta(-0.264ea_0^2)$, which differs from our best correlated result $(-0.253ea_0^2)$ by only 4%. The reason for the insensitivity of $\Theta(O_2)$ to correlation effects is a consequence of the difference in the response of the σ and π electrons in O_2 to electron correlation and will be discussed after the quadrupole density is introduced. The first and second derivatives of these curves are collected in Table 5.

TABLE 9: Selection of O₂ Quadrupole Moments

$R(a_0)$	$\Theta(ea_0^2)$	ref	comment
2.1747	-0.4188	LH^{a}	ROHF; R _{opt}
2.1885	-0.3427	LH^{a}	UHF; R_{opt}
2.28	-0.2634	LH^{a}	ROHF
2.28	-0.188	26	SCF Sadlej ¹⁶ basis (5s3p2d)
2.28	-0.249	26	SCF
2.2819	-0.271	48	CI
2.282	-0.356	18	numerical DFT (unrestricted)
2.28	-0.3885	27	numerical HFS ($\alpha = 0.7$)
2.28	-0.36	29	numerical HFS (restricted)
2.2970	-0.2885	LH^a	CBS-CASSCF; Ropt
2.2873	-0.2530	LH^{a}	CBS-CASSCF+1+2; R_{opt}
vibrational average	-0.240	LH^{a}	CBS-CASSCF+1+2
exptl	0.25	42, 47	pressure-induced,
			far-infrared spectrum
exptl	-0.3 ± 0.1	41	optical birefringence
a 1711 ' 1			

^a This work.

Experimental data on O₂ is sparse. Buckingham *et al.*⁴¹ report $-0.3 \pm 0.1ea_0^2$ from induced birefringence measurements, and Cohen and Birnbaum^{42,47} report $|\Theta| = 0.25ea_0^2$ obtained from the interpretation of pressure-induced far-infrared spectra. These, and selected theoretical results, are shown in Table 9. Using the derivatives in Table 5, we estimate that the vibrational correction to our CBS-CASSCF+1+2 result is

$$\Theta(O_2;v) = -0.2530 + 0.0257(v + \frac{1}{2})$$

resulting in $\Theta(O_2, v=0) = -0.2273ea_0^2$, which is in general agreement with the highly uncertain experimental values. The experimental estimate⁴³ of $(d\Theta/dR)_{exptl}$ for O₂, obtained from an analysis of the quadrupole absorption spectrum, is + 1.6*ea*₀ and is in reasonable agreement with our ROHF, MCSCF, and MRCI values of 1.8, 1.4, and 1.5*ea*₀, respectively.

Our F₂ results are collected in Table 4. As with H₂, N₂, and O₂, the quadrupole moment decreases within a model with increasing quality of basis set and as in O₂, electron correlation increases Θ . Our CBS-RHF limit is $+ 0.3081ea_0^2$ at $R_{opt} =$ 2.5064*a*₀ and +0.501*ea*₀² at $R = 2.68a_0$. This latter value is in good agreement with the numerical Hartree-Fock result of McCullough,²³ +0.505 ea_0^2 , at $R = 2.68a_0$. Our CBS-CASSCF+1+2 value of $+0.7165ea_0^2$ ($R_{opt} = 2.6853a_0$) is in good agreement with the numerical HFS calculations of Laaksonen et al.²⁷ 0.6911 ea_0^2 at $R = 2.68a_0$, and those of Becke,²⁹ + 0.69 ea_0^2 also at $R = 2.68a_0$. Our CBS limit at R = $2.68a_0$ is $+ 0.7068ea_0^2$. Correlation correction effects more than double $\Theta(F_2)$, a much larger effect than in H₂, N₂, and O₂. This substantial correlation effect is consistent with the results of Dykstra³¹ et al. and Maroulis and Thakkar.³² These latter authors report a SCF value of $0.5157ea_0^2$ and a SDQ-MPPT(4) value of $0.7466ea_0^2$, both calculated at $R = 2.66816a_0$. As we will see subsequently, the correlation corrections to Θ , due to the σ and π electrons, are both in the same direction, and, rather than cancel as in O₂, they reinforce one another. Using the data in Table 4, we write the vibrational averaged Θ as

$$\Theta(F_2;v) = +0.7131 + 0.0276(v + \frac{1}{2})$$

and, so, $\Theta(F_2;0) = +0.7269ea_0^2$. We collect the values of Θ from selected calculations in Table 10. The experimental measurements^{33,34} of $\Theta(F_2)$, $1.0-1.3ea_0^2$ and $0.56ea_0^2$ have large uncertainties associated with them. We have collected the CASSCF+1+2 values of Θ along with the estimated CBS limit and vibrational corrections in Table 11.

MP2 Results

It is apparent, from Tables 1-4, that MP2 is a significant improvement over the SCF model with little additional effort.

4786 J. Phys. Chem. A, Vol. 101, No. 26, 1997

TABLE 10: F₂ Quadrupole Moments

$R(a_0)$	$\Theta(ea_0^2)$	ref	comment
2.68	0.505	23	numerical HF
2.6681	0.5447	31	derivative Hartree-Fock,
			ELP basis
2.68	0.659	49	SCF
2.66816	0.7466	32	SDQ-MPPT(4) 6s5p3d1f basis
2.66816	0.5157	32	SCF 6s5p3d1f basis
2.5064	0.3081	LH^a	CBS-HF; R_{opt}
2.68	0.501	LH^a	CBS-HF; R_{exptl}
2.68	0.6911	27	numerical HFS ($\alpha = 0.7$)
2.68	0.69	29	numerical HFS ($\alpha = 0.7$)
2.6681	0.6880	31	ACCD, ELP basis
2.6853	0.7131	LH^a	CBS-CASSCF+1+2; R _{opt}
2.68	0.707	LH^a	CBS-CASSCF+1+2; R_{eq}
vibrational average	0.727	LH^a	CBS-CASSCF+1+2; $v = 0$ $J = 0$
exptl	1.0-1.3	33	fitting of pressure second virial coefficients
exptl	0.56	34	fitting of pressure and dielectric second virial coefficients

^a This work.

We collect our MP2 results in Table 11 and compare them to the corresponding CBS CASSCF+1+2 results. The comparison is striking and suggests strongly that the corrections due to MP3 and MP4 cancel one another significantly. This has been seen by Wolinski *et al.*¹⁶ and Maroulis and Thakkar²⁴ and is being further investigated in this laboratory.⁵⁰

Quadrupole Moment Functions

We study the distance dependence of Θ (quadrupole-moment function), using the aug-cc-pvqz basis and the MCSCF and MRCI wave functions. These wave functions provide a reasonably accurate description of the molecule's electronic structure over a large range of internuclear distances, and we expect the calculated quadrupole-moment functions to be realistic.

The quadrupole moment functions for the four molecules of interest are shown in Figure 1, from which we see that H₂ is unique—having the only quadrupole-moment function that is everywhere positive. Θ for H₂ and N₂ is zero at large *R* because both molecules separate to atoms in S states. Θ for F₂ and O₂ separates to the sum of the atomic quadrupole moments of the atoms. For F₂, the F atoms are in the ²P_{m=0} (²P_z) state, loosely corresponding to the configuration

$$1s^{2}2s^{2}2p_{x}^{2}2p_{y}^{2}2p_{z}^{1}$$

with *z* labeling the internuclear axis. For O_2 , the atoms are in the ${}^{3}P_{|M|=1}$ levels, which, in a real representation, corresponds to one atom in

$$1s^{2}2s^{2}2p_{x}^{2}p_{y}^{1}p_{z}^{1}$$

and one in

$$1s^{2}2s^{2}2p_{x}^{1}2p_{y}^{2}2p_{z}^{1}$$

Figure 1. Molecular quadrupole moments of H_2 , N_2 , O_2 , and F_2 as a function of bond length.

We will first consider N₂, O₂, and F₂, returning to H₂ latter. Let us first write the electron density at internuclear separation R as

$$n(\vec{r};R) = n_{\rm A}^0(\vec{r}) + n_{\rm B}^0(\vec{r}) + \delta n(\vec{r};R)$$
(5)

where n_A^0 and n_B^0 are the electron densities of the two noninteracting atoms placed at the appropriate nuclear positions. Note that δn is defined by this equation. As a practical matter, n_A^0 and n_B^0 are obtained from the natural orbitals of the MCSCF or MRCI wave functions at large values of *R* and translated, intact, to the internuclear separation of interest.

Using eq 5, the quadrupole moment defined by eq 1 can be rewritten as

$$\Theta(A_2;R) = 2\Theta^0(A) + \int \delta\Theta(\vec{r};R) \,\mathrm{d}V \tag{6}$$

where $\Theta^0(A)$ is the quadrupole moment of the separated atom A in the diatomic A_2

$$\Theta^{0}(A) = -\frac{1}{2} \int n_{\rm A}^{0}(\vec{r}) (3z^{2} - r^{2}) \,\mathrm{d}V \tag{7}$$

and $\delta \Theta$ is the quadrupole-moment density

$$\delta\Theta = -\frac{1}{2}\,\delta n(\vec{r};R)(3z^2 - r^2) \tag{8}$$

Note that the nuclear contribution to $\Theta(A_2;R)$ is now implicit in $\delta n(\vec{r};R)$. Note, also, that $\Theta(A_2;R)$ is now written as the sum of a (constant) atomic contribution, $2\Theta^0(A)$ and a contribution

TABLE 11: Comparison of MP2 and CASSCF+1+2 Results

	aug-c	c-pvqz	MP2 (estin	mated CBS)	С	ASSCF+1+2 (es	stimated CBS)
molecule	$R_{\rm opt}(a_0)$	$\Theta(ea_0^2)$	$R_{\text{opt}}\left(a_{0} ight)$	$\Theta(ea_0^2)$	$R_{\rm opt}(a_0)$	$\Theta(ea_0^2)$	vibration correction
H ₂	1.4014	+0.4569	1.3895	+0.4699	1.4009	+0.4552	+ 0.051 (v + 1/2)
N_2	2.0827	-1.1247	2.0970	-1.1751	2.0810	-1.1270	+0.0137(v + 1/2)
O_2	2.2907	-0.2368	2.3032	-0.2546	2.2873	-0.2530	+0.0257(v + 1/2)
F_2	2.6853	+0.7165	2.6452	+0.7178	2.6853	+0.7131	+0.0276(v + 1/2)

Molecular Quadrupole Moments of H₂, N₂, O₂, and F₂

Figure 2. Distance dependence of the molecular quadrupole moments of N₂, O₂, and F₂ partitioned into the Θ_{σ} and Θ_{π} components.

 Θ_{mol} , due to molecule formation

$$\Theta_{\rm mol}(R) = \int \delta \Theta(\vec{r}; R) \, \mathrm{d}V \tag{9}$$

Since we may easily partition δn into σ and π contributions

$$\delta n = \delta n_{\sigma} + \delta n_{\pi} \tag{10}$$

we may also write

$$\Theta(\mathbf{A}_2; \mathbf{R}) = \Theta_o(\mathbf{A}_2; \mathbf{R}) + \Theta_{\pi}(\mathbf{A}_2; \mathbf{R})$$
(11)

where

$$\Theta_{\sigma}(\mathbf{A}_{2};\mathbf{R}) = 2\Theta_{\sigma}^{0}(\mathbf{A}) + \int \delta\Theta_{\sigma}(\vec{r};\mathbf{R}) \,\mathrm{d}V \qquad (12)$$

with an analogous expression for $\Theta_{\pi}(A_2;R)$. The σ and π components of the quadrupole-moment curves for N₂, O₂, and F₂ are shown in Figure 2 for a MRCI wave function in an augcc-pvqz basis. Note that Θ_{σ} is always negative and Θ_{π} is always positive; while the sign of Θ depends on the relative magnitudes of these contributions, Θ usually decreases from its asymptotic value with decreasing *R*. The relative asymptotic values are easily understood, in terms of an orbital model. For example, the *zz* component of the atomic quadrupole moment of (oriented, m = 0) F is given by

$$\Theta(F; {}^{2}\mathbf{P}_{z}) = \Theta(2\mathbf{p}_{z}) + 2\Theta(2\mathbf{p}_{y}) + 2\Theta(2\mathbf{p}_{x})$$

where

$$\Theta(2p_{\alpha}) = -\frac{1}{2} \int (2p_{\alpha})^2 (3z^2 - r^2) \, \mathrm{d}V$$

By symmetry

$$\Theta(2p_x) = \Theta(2p_y)$$

and

$$\Theta(2\mathbf{p}_{x}) + \Theta(2\mathbf{p}_{y}) + \Theta(2\mathbf{p}_{z}) = 0$$

With *z* as the internuclear line

$$\Theta_{\pi}(\mathbf{F}) = 2\Theta(2\mathbf{p}_{x}) + 2\Theta(2\mathbf{p}_{y}) = -2\Theta(2\mathbf{p}_{z}) \equiv -2\Theta_{\sigma}(F)$$

It is easy to show

$$\Theta(2\mathbf{p}_z) = \Theta_o(\mathbf{F}) < 0$$

so in an orbital model where all 2p orbitals are radially equivalent

$$\Theta_{\pi}(\mathbf{F}) = -2\Theta_{\sigma}(\mathbf{F}) > 0$$

Our asymptotic values are

$$\Theta_{\pi}(\mathbf{F}) = +2.517ea_0^2$$
$$\Theta_{\sigma}(\mathbf{F}) = -1.170ea_0^2$$

These are not precisely in the symmetry-determined ratio because our wave function has D_{2h} symmetry and our correlated wave function results in asymptotic p functions that are not equivalent.

In a similar fashion, the O $({}^{3}P_{|M|=1})$ quadrupole moment is given by

$$\Theta(\mathbf{O}; {}^{3}\mathbf{P}_{|M|=1}) = 2\Theta(2\mathbf{p}_{x}) + \Theta(2\mathbf{p}_{y}) + \Theta(2\mathbf{p}_{z})$$
$$\Theta_{\pi}(\mathbf{O}) = 2\Theta(2\mathbf{p}_{x}) + \Theta(2\mathbf{p}_{y})$$
$$\Theta_{\sigma}(\mathbf{O}) = \Theta(2\mathbf{p}_{z})$$
$$\Theta_{\pi}(\mathbf{O}) = 3\left(-\frac{1}{2}\Theta_{\sigma}(\mathbf{O})\right) = -\frac{3}{2}\Theta_{\sigma}(\mathbf{O})$$

Our asymptotic values are

$$\Theta_{\pi}(\mathbf{O}) = +2.435ea_0^2$$
$$\Theta_{\pi}(\mathbf{O}) = -1.499ea_0^2$$

They differing from the simple orbital ratios for reasons described earlier.

If we reference each molecular quadrupole-moment function to its asymptotic atomic contribution, we obtain Figures 3–5, which are simply $\Theta_{mol}(R)$ and its component Θ_{mol}^{σ} and Θ_{mol}^{π} . Some insight into why Θ_{mol}^{σ} is always negative and Θ_{mol}^{π} is always positive may be obtained by examining $\delta \Theta_{\sigma}(\vec{r};R)$ and $\delta \Theta_{\pi}(\vec{r};R)$. Recall

$$\delta\Theta_{\sigma} = -\frac{1}{2} \delta n_{\sigma}(\vec{r};R) (3z^2 - r^2) = -\frac{1}{2} r^2 \delta n_{\sigma}(\vec{r};R) (3\cos^2\theta - 1)$$
(13)

where the origin is the molecular midpoint and θ is measured relative to the internuclear line as the polar axis. This equation relates electron shifts in the σ system, upon bond formation to the molecular contribution to the quadrupole moment. Note that the factor $-1/2(3 \cos^2 \theta - 1)$ partitions the molecular space into two regions, labeled N and P and shown in Figure 6. It is interesting to note that the parabolas delineating the Berlin⁵² bonding and antibonding regions are asymptotically tangent to the nodal surfaces separating the N and P regions. In the connical regions labeled N, to the rear of the nuclei, the angular

Figure 3. Distance dependence of the quadrupole moment of N_2 partitioned into its Θ_{mol}^{σ} and Θ_{mol}^{π} components.

Figure 4. Distance dependence of Θ_{mol} for O_2 partitioned into its Θ_{mol}^{σ} and Θ_{mol}^{π} components.

factor is negative, and thus, a positive δn_{σ} in this region results in a negative contribution to Θ_{mol}^{σ} . In N₂, the σ bond involves a large sp hybridization, moving charge toward the midpoint of the molecule. Simultaneously, the opposite-phase sp hybrid pooches out to the rear of the nuclei contributing to a positive δn_{σ} and, therefore, a negative $\delta \Theta_{\sigma}$. Note that this effect is enhanced by the r^2 term in eq 13, which weights heavily the farther reaches of δn_{σ} . Along with the σ bond in N₂, we, of course, have the π bond, which results in δn_{π} being positive in the region between the nuclei and above the molecular line; since $\delta \Theta_{\pi} = \frac{1}{2}r^2 \delta n_{\pi} (3 \cos^2 \theta - 1)$, this is precisely where the angular factor is positive, and, therefore, an accumulation of charge in the π system (positive δn_{π}) results in a positive value of $\delta \Theta_{\pi}$ and contributes toward a positive value of Θ_{mol}^{π} . These effects are vividly illustrated in Figure 7, which shows δn , δn_{σ} , and δn_{π} and the associated $\delta \Theta$, $\delta \Theta_{\sigma}$, and $\delta \Theta_{\pi}$ densities for N₂. Note that the increase in charge density around the molecular midpoint contributes little to Θ_{mol} , as it is multiplied

Figure 5. Distance dependence of Θ_{mol} for F_2 partitioned into its Θ_{mol}^{σ} and Θ_{mol}^{π} components.

Quadrupole density nodes (Solid lines)

Berlin bonding & antibonding regions separated by parabolic curves

Figure 6. Nodes of $-\frac{1}{2}(3 \cos^2 \theta - 1)$ (solid lines) and parabolas separating the Berlin bonding and antibonding regions.

by r^2 (small in this region), and much cancellation results from the integration over $3 \cos^2 \theta - 1$. The situation with O₂ and F₂ differ only in degree. sp hybridization decreases in going from N₂ to O₂ to F₂, and this is reflected in a less negative value of Θ_{mol}^{σ} in O₂ and F₂, relative to N₂.

The π systems in O₂ and F₂ are qualitatively different from N₂'s, and this is reflected in the Θ_{mol}^{σ} curves shown in Figures 3–5. For O₂, δn_{π} is smaller than in N₂ and, thus, $\Theta_{mol}^{\pi}(O_2)$ is less positive. For F₂, δn_{π} is almost zero and $\Theta_{mol}^{\pi}(F_2)$ is small. One striking feature of Θ_{mol}^{π} in N₂ and O₂ is the maximum (Figures 3 and 4), which we understand as follows. As the nuclei come together, π electron density accumulates between them (in the P region of Figure 6), and, as *R* becomes comparable to R_e , some of this density begins to spill over into the N region and thus Θ_{mol}^{π} begins to decrease. The same situation obtains in O₂ and F₂. In O₂, one has less accumulation

Figure 7. Electron-density difference and the associated quadrupole-density contours for N₂ at 2.1*a*₀ calculated with a MRCI wave function and the aug-cc-pvtz basis. The top row shows δn versus $\delta \Theta$; the middle, δn_{σ} versus $\delta \Theta_{\sigma}$; the bottom, δn_{π} versus $\delta \Theta_{\pi}$. The contour values are $\pm 2^{N} \times 10^{-3}$ (atomic units) with N = 0-6. The dashed contours are negative, the solid contours are positive, and the nodes are dotted. The *x*-axis on the plots is the *z*-axis or internuclear line in the text.

and a smaller increase in $\Theta_{\text{mol}}^{\pi}$, but the same spilling of δn_{π} into the N region. δn_{π} for F_2 is rather flat, although one still has a slight maximum in $\Theta_{\text{mol}}^{\pi}$. The equilibrium bond length in these molecules is smaller than the internuclear distance where $\Theta_{\text{mol}}^{\pi}$ is a maximum, so, the slopes of both the π and σ component of Θ are both positive around R_{e} .

H_2

A similar analysis for H₂ shows that, as the two H atoms approach to form a bond, the density difference δn_{σ} is positive

between the nuclei with a large negative region to the rear of each nucleus. Because of the $3 \cos^2 \theta - 1$ factor in the quadrupole density integrand, the positive region between the nuclei integrate to a small contribution to Θ_{mol}^{σ} , while the decreased density in the N region of Figure 6 contributes to a large positive Θ_{mol}^{σ} . This characteristic of δn_{σ} is common to s-s bonds such as H₂, Li₂, Na₂, etc. and opposite to the spsp bonds characteristic of N₂, O₂, and F₂. The maximum in Θ_{mol}^{σ} obtains when large positive components of δn_{σ} in the N region spill over into the P region, and this happens a little before

Figure 8. Electron-density difference, δn , and the associated quadrupole-density, $\delta \Theta$, contours for H₂ at 1.4*a*₀ calculated with a 10 CSF MCSCF wave function and the aug-cc-pv5z basis. Contour values and conventions are as in Figure 7.

the equilibrium separation. Clearly, Θ will go to zero as $R \rightarrow 0$ and $n(\vec{r};R)$ approaches the united atom limit. These observations are illustrated in Figure 8.

On the Sign of the Molecular Quadrupole Moment

From the preceding discussion, we see that the sign of Θ for N₂, O₂, and F₂ depends on the relative values of Θ_{σ} (negative) and Θ_{π} (positive). In F₂, for example, one has a large positive π contribution at ∞ , due to the separated atoms, which changes little as the molecule forms because δn_{π} is small and essentially independent of *R*. The asymptotically negative σ contribution is reduced further by σ bond formation but not enough to change the sign of Θ , which remains positive. The F₂ σ contribution is anemically negative because of the very slight sp hybridization in F₂. In O₂, the asymptotic value of Θ is less positive than in F₂, and the increased sp hybridization is an egative quadrupole moment. In N₂, the large sp hybridization causes the Θ_{σ} to be dominant and Θ is decidedly negative. The situation in H₂ is

Figure 9. Effect of electron correlation on the magnitude and distance dependence of Θ , Θ_{σ} , and Θ_{π} for N₂.

fundamentally different. The sign is always positive because at large *R* the s-s bond results in δn_{σ} being negative in the N region, and this situation obtains until the maximum in Θ (H₂;*R*), after which Θ decreases toward zero, as described above.

Correlation Effects on Θ_{mol}^{σ} and Θ_{mol}^{π}

Further insight into the relationship between electron correlation and the quadrupole moment obtains from an analysis of Θ_{σ} and Θ_{π} . In Figure 9, we plot these quantities for the SCF, MCSCF, and MRCI wave functions of N₂ (aug-cc-pvqz basis). The distance dependence of Θ_{σ} (around $R_{\rm e}$) for all three wave functions is similar, with the SCF and MCSCF contributions being remarkably so. The MRCI value of Θ_{α} is the largest of the three and reflects the effect of dynamic correlation in increasing δn_{σ} in the region between the nuclei. The correlated distance dependence of Θ_{π} differs markedly from the SCF value and is significantly smaller. These results suggest that the reasonable values of Θ calculated from SCF functions (Table 7) obtain because of a cancellation of errors, $\Theta_{\sigma}(SCF)$ being too negative and $\Theta_{\pi}(SCF)$ too positive. Our calculated $\Theta(SCF)$ is $-0.9306ea_0^2$, while Θ (CASSCF+1+2) is $-1.1334ea_0^2$, both at $R = 2.07432a_0$. These differ by 18%, and most of the error is in the π contribution.

The corresponding data for O₂ and F₂ are given in Figures 10 and 11. Note that the scales in these plots are identical and the magnitude of the effect of electron correlation on Θ_{σ} and Θ_{π} is similar. In O₂, like N₂, Θ_{σ} (SCF) is too negative, while Θ_{π} (SCF) is too positive, resulting in a similar cancellation of errors. At 2.28*a*₀, we calculate Θ (O₂;ROHF) = $-0.2634ea_0^2$ and Θ (O₂;CASSCF+1+2) = $-0.2530ea_0^2$, a difference of only 4%, as noted earlier. In F₂, both Θ_{σ} (SCF) and Θ_{π} (SCF) are too small, but rather than cancel they add and result in a Θ -(SCF) ($0.501ea_0^2$ at $R = 2.68a_0$) compared to the Θ (CASSCF +1+2) value of $0.707ea_0^2$ (a difference of 29%) at the same bond length.

Conclusions

We have studied the quadrupole moments of H_2 , N_2 , O_2 , and F_2 and have estimated the CASSCF+1+2 basis-set limit for the latter three and the CISD limit for H_2 . These are in excellent agreement with comparable calculations by others and in good

Figure 10. Effect of electron correlation on the magnitude and distance dependence of Θ , Θ_{σ} , and Θ_{π} for O₂.

Figure 11. Effect of electron correlation on the magnitude and distance dependence of Θ , Θ_{σ} , and Θ_{π} for F₂.

agreement with the existing experimental data. The rather large values of the quadrupole moment derivatives, shown in Table 5, result in the quadrupole moment being a very sensitive function of *R* around R_{opt} . We have written the global quadrupole-moment function as the sum of an atomic contribution and a molecular contribution Θ_{mol} . The atomic contribution is simply the sum of the quadrupole moments of the constituent (oriented) free atoms, while the molecular contribution is an integral over a quadrupole-density function of the form

$$\delta\Theta = -\frac{1}{2}(3\cos^2\theta - 1)r^2\,\delta n$$

in which the nuclear contributions are implicit in δn . While not unique, this partitioning of Θ allows us to separate molecular effects from additive atomic effects and provides a deeper understanding of the variation of Θ with *R*. In particular, the nodal structure of $3 \cos^2 \theta - 1$ allows us to partition the space in a diatomic molecule into N regions, to the rear of the nuclei and complimentary P regions. Because $\delta\Theta$ is linear in δn , one may define quadrupole densities associated with δn_{σ} and δn_{π} and examine the contribution of the σ and π deformation densities to the molecular quadrupole moment. Increases in δn_{σ} in the N region contribute to make Θ_{mol}^{σ} positive, while increases in δn_{π} in the P region make Θ_{mol}^{π} positive, and, thus, the molecular contribution to the quadrupole moment is the sum of two opposite-signed terms. The total molecular quadrupole moment is the sum of this molecular contribution and the moment due to the sum of the separated atoms. This perspective is useful in understanding the difference in the quadrupole moments of related systems, such as N₂ and P₂, O₂ and S₂, C₆H₆ and C₆F₆, etc.⁵¹ Additionally, the effect of electron correlation on Θ may be partitioned into σ and π contributions via δn_{σ} and δn_{π} .

We note that the parabolas that delineate the Berlin bonding and antibonding regions are asymptotically tangent to the nodal surfaces separating the N and P regions (Figure 6). Indeed, the largest contribution to Θ_{mol}^{σ} and Θ_{mol}^{π} come from a density difference that is largely localized in the Berlin⁴⁷ antibonding and bonding regions, respectively.

Additional details including contour plots and three-dimensional images of δn and $\delta \Theta$, as well as detailed numerical values of Θ as a function of *R*, have been prepared.⁵³

Acknowledgment. This work has been supported, in part, by the MSU Center for Fundamental Materials Research. Several of the Silicon Graphics Workstations used in this work were purchased with an NSF instrument grant, CHE9321436.

References and Notes

(1) (a) Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. Kendall, R. A.; Dunning, T. H., Jr.; Harrison, R. J. J. Chem. Phys. 1992, 96, 6796. Peterson, K. A.; Kendall, R. A.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 99, 9790. (b) Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory, which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institute for the U.S. Department of Energy under contract DE-AC06-76RLO 1830. Contact David Feller, Karen Schuchardt, or Don Jones for further information.

(2) Frisch, M. J.; Trucks, G. W.; Head-Gordon, M.; Gill, P. M. W.; Wong, M. W.; Foresman, J. B.; Johnson, B. G.; Schlegel, H. B.; Robb, M. A.; Replogle, E. S.; Gomperts, R.; Andres, J. L.; Raghavachari, K.; Binkley, J. S.; Gonzalez, C.; Martin, R. L.; Fox, D. J.; Defrees, D. J.; Baker, J.; Stewart, J. J. P.; Pople, J. A. *Gaussian 92*, Revision A Gaussian, Inc.: Pittsburgh PA, 1992.

(3) Shepard, R.; Shavitt, I.; Pitzer, R. M.; Comeau, D. C.; Pepper, M.; Lischka, H.; Szalay, P. G.; Ahlrichs, R.; Brown, F. B.; Zhao, J. G. *Int. J. Quantum Chem. Symp.* **1988**, *22*, 149.

- (4) Buckingham, A. D. Adv. Chem. Phys. 1967, 12, 107.
- (5) Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 99, 1914.
- (6) Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1965, 43, 2429.
- (7) Stogryn, D. E.; Stogryn, A. P. Mol. Phys. 1966, 11, 371.
- (8) McLean, A. D.; Yoshimini, M. J. Chem. Phys. 1966, 45, 3676.

(9) Ramsy, N. F. *Molecular Beams*; Oxford University Press: London, 1956.

(10) Buckingham, A. D.; Cordle, J. E. Mol. Phys. 1974, 4, 1037.

(11) Amos, R. D. Mol. Phys. 1980, 39, 1.

(12) Huber, K. P.; Herzberg, G. Molecular spectra and molecular structure. *Constants of Diatomic Molecules*; (Van Nostrand-Reinhold: New York, 1979; Vol. 4.

(13) Laaksonen, L.; Pyykkö, P.; Sundholm, D. Comput. Phys. Rep. 1986, 4, 313.

(14) Wolniewicz, L. J. Chem. Phys. 1966, 45, 515.

(15) Komasa, J.; Thakkar, A. J. Mol. Phys. 1993, 78, 1039.

(16) Wolinski, K.; Sadlej, A. J.; Karlström, G. Mol. Phys. 1991, 72, 425.

- (17) Kolos, W.; Roothaan, C. C. J. Rev. Mod. Phys. 1960, 32, 219.
- (18) Dickson, R. M.; Becke, A. D. J. Phys. Chem. 1996, 100, 16105.
- (19) Diercksen, G.; Sadlej, A. J. Theor. Chim. Acta 1983, 63, 69.

(20) Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1964, 41, 3674.

(21) Sundholm, D.; Pyykkö, P.; Laaksonen, L. Mol. Phys. 1985, 56, 1411.

- (22) Maroulis, G.; Thakkar, A. J. J. Phys. B 1987, 20, L551.
- (23) McCullough, E. A., Jr. Mol. Phys. 1981, 42, 943.
- (24) Maroulis, G.; Thakkar, A. J. J. Chem. Phys. 1988, 88, 7623.
- (25) Feller, D.; Boyle, C. M.; Davidson, E. R. J. Chem. Phys. 1987, 86, 3424.
- (26) Bündgen, P.; Green, F.; Thakker, A. J. J. Mol. Struct. 1995, 334, 7.
- (27) Laaksonen, L.; Sundholm, D.; Pyykkö, P. Int. J. Quantum Chem. 1985, xxvii, 601.
- (28) Duffy, P.; Chong, D. P. J. Chem. Phys. 1995, 102, 3312.
- (29) Becke, A. D. J. Chem. Phys. 1982, 76, 6037.
- (30) Piecuch, P.; Kondo, A. E.; Spirko, V.; Paldus, J. J. Chem. Phys. **1996**, 104, 4699.
- (31) Dykstra, E. C.; Liu, S.; Malik, D. J. Adv. Chem. Phys. 1989, 75, 37.
- (32) Maroulis, G.; Thakkar, A. J. J. Chem. Phys. 1989, 90, 366.
- (33) Spurling, T. H.; Mason, E. A. J. Chem. Phys. 1967, 46, 322
- (34) Ely, J. F.; Hanley, H. J. M.; Straty, G. C. J. Chem. Phys. 1973, 59, 842.
- (35) Spirko, V.; Piecuch, P.; Kondo, A.; Paldus, J. J. Chem. Phys. 1996, 104, 4716.
- (36) Buckingham, A. D.; Graham, C.; Williams, J. H. Mol. Phys. 1983, 49, 703.

- (37) Graham, C.; Pierrus, J.; Raab, R. E. Mol. Phys. 1989, 67, 939.
- (38) Truhlar, D. G. Int. J. Quantum Chem. 1972, VI, 975.
- (39) Maroulis, G.; Bishop, D. M. Mol. Phys. 1986, 58, 273.
- (40) Cartwright, D. C.; Dunning, T. H. J. Phys. B 1974, 7, 1776.
- (41) Buckingham, A. D.; Disch, R. L.; Dummur, D. A. J. Am. Chem. Soc. 1968, 90, 3104.
- (42) Cohen, R. E.; Birnbaum, G. J. Chem. Phys. 1977, 66, 2443.
 (43) Camy Plyret, C.; Flaud, J. M.; Delbouille, L.; Roland, G.; Brault,
- J. W.; Testerman, L. J. Phys. Lett. 1981, 42, L279.
 - (44) Reddy, S. P.; Cho, C. W. Can. J. Phys. 1965, 43, 2331.
 - (45) Shapiro, M. M.; Gush, H. P. Can. J. Phys. 1966, 44, 949.
 - (46) Reuter, D.; Jennings, D. E. J. Mol. Spectrosc. 1986, 115, 294.
 - (47) Birnbaum, G. J.; Cohen, E. R. Mol. Phys. 1976, 32, 161.
 - (48) Rijks, W.; van Heeringen, M.; Wormer, P. E. S. J. Chem. Phys.
- **1989**, *90*, 6501.
 - (49) Wahl. A. C. J. Chem. Phys. 1964, 41, 2600.
 - (50) Lawson, D. Ph.D. Thesis, Michigan State University, 1997.
 - (51) Lawson, D.; Harrison, J. F. To be published.
 - (52) Berlin, T. J. Chem. Phys. 1951, 19, 208.
- (53) Lawson, D.; Harrison, J. F. Unpublished work. Available via the World Wide Web at: www.cem.msu.edu/~harrison.